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 Abstract  7 

GNSS collaborative positioning receives great attention because of the rapid development of 8 

vehicle-to-vehicle (V2V) communication. Its current bottleneck is in urban areas. During the 9 

relative positioning using GNSS double difference pseudorange measurements, the multipath 10 

effects and non-line-of-sight (NLOS) reception cannot be eliminated, or even worse, both might 11 

be aggregated. It has been widely demonstrated that 3D map aided (3DMA) GNSS can mitigate 12 

or even correct the multipath and NLOS effects. We, therefore, investigate the potential of aiding 13 

GNSS collaborative positioning using 3D city models. These models are used in two phases. First, 14 

the building models are used to exclude NLOS measurements at a single receiver using GNSS 15 

shadow matching (SDM) positioning. Second, the models are used together with broadcast 16 

ephemeris data to generate a predicted GNSS positioning error map. Based on this error map, each 17 

receiver will be identified as experiencing healthy or degraded conditions. The receiver 18 

experiencing degraded condition will be improved by the receiver experiencing the healthy 19 

condition, hence the aspect of collaborative positioning. Five low-cost GNSS receivers are used to 20 

conduct experiments. According to the result, the positioning accuracy of the receiver in a deep 21 

urban area improves from 46.2 to 14.4 meters.  22 

 23 

Introduction 24 

One of the bottlenecks of intelligent transportation system (ITS) is the positioning accuracy of 25 

vehicles. To improve the accuracy of positioning, an inertial navigation system (INS) is always 26 

integrated with GNSS (Groves 2013). Due to progress in computing capability, LiDAR is 27 

employed for simultaneous localization and mapping (SLAM) (Levinson et al. 2007). Unlike other 28 
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sensors measuring the relative position, the GNSS also provides absolute positions without 29 

accumulated error. Therefore, the GNSS solution is still a key technology to provide the 30 

positioning service for autonomous driving (Kamijo et al. 2015). 31 

 Due to the expected maturity of vehicle-to-vehicle (V2V) communications in the near 32 

future (Qiu et al. 2015), the positioning via V2V cooperation becomes possible. By making use of 33 

numerous measurements from surrounding vehicular, the positioning accuracy of the target vehicle 34 

can be much improved (de Ponte Müller 2017). The collaborative  positioning can be mainly 35 

divided into transponder-based and GNSS-based relative positioning (Elazab et al. 2016; Liu et al. 36 

2017). By combining various types of transponder-based measurements (Xu et al. 2015), the 37 

positioning accuracy can be optimized through a weighted solution (Elazab et al. 2016), least 38 

squares estimation (Van Nguyen et al. 2015), or the application of a probability density filter 39 

(Zhang et al. 2014). However, the transponder-based approach suffers from signal reflection or 40 

blockage and unsynchronized clock, making practical implementation difficult (Blumenstein et al. 41 

2015). The GNSS-based approaches directly exchange the GNSS data between vehicles to 42 

improve the positioning performance (Lassoued et al. 2017), and most of them use the double-43 

difference (DD) method (Alam et al. 2013). The idea behind the DD technique is to eliminate 44 

common pseudorange error between two GNSS receivers, including ionospheric, tropospheric, 45 

and satellite clock/orbit errors. As mentioned by Liu et al. (2014), the DD-based collaborative  46 

positioning is still difficult in urban areas due to multipath and NLOS errors.  47 

In urban canyons, the GNSS signal can be reflected by a building surface, experiencing an 48 

extra traveling distance. The signal multipath and NLOS effects are introducing GNSS positioning 49 

errors that can in extreme cases exceed 100 meters in urban areas (Hsu 2018). One of the feasible 50 

solutions is to apply fault detection and exclusion (FDE) for the multipath or NLOS affected 51 

signals. A GNSS consistency check has been proposed to select consistent measurements for 52 

positioning based on pseudorange residuals (Groves and Jiang 2013). Similarly, a Forward-53 

Backward receiver autonomous integrity monitoring (RAIM) technique has been developed to 54 

improve the performance of GNSS in the urban environment (Angrisano et al. 2012). The random 55 

sample consensus (RANSAC) method is further employed to improve the performance of RAIM 56 

in case of multiple outliers (Castaldo et al. 2014). Due to the arrival of multi-GNSS, the availability 57 

of GNSS is enhanced even in a dense urban area, which further improves its positioning 58 
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performance (Hsu et al. 2017). However, multi-GNSS could also increase the number of outliers 59 

(multipath or NLOS), rendering FDE unable to obtain satisfactory performance in dense urban 60 

area. Because multipath and NLOS effects are produced by buildings, a 3D building model can be 61 

employed to evaluate and mitigate such effects (Tiberius and Verbree 2004). The shadow matching 62 

(SDM) is a widely used 3DMA GNSS positioning method (Groves 2011).  Instead of using 63 

pseudorange, it uses satellite visibility as measurement to estimate the receiver position. Satellite 64 

visibility is defined by the blockage of LOS signal transmission. If a satellite is not tracked by a 65 

receiver, it is very likely the signal is blocked by the buildings and vice versa. The SDM determines 66 

the receiver position by matching the satellite visibility computed from receiver measurements 67 

with the visibility for hypothesized positions using 3D models. If the computed visibility matched 68 

the visibility of a hypothesized position, then the receiver is very likely located at that hypothesized 69 

position. The performance assessment and of the 3DMA GNSS and the effect of mapping quality 70 

are summarized in Adjrad et al. (2018) and Groves and Adjrad (2018). 71 

It is interesting to note the 3DMA GNSS and GNSS-based collaborative positioning are 72 

complementary; the former one can greatly mitigate multipath and NLOS effects while it is still 73 

suffering from various other factors to achieve highly accurate positioning. The latter one can 74 

eliminate the systematic errors by sharing raw GNSS data between vehicles, but it is limited to 75 

using multipath-free measurements. In addition, the receiver will be identified as experiencing 76 

healthy or degraded conditions based on 3DMA GNSS (Bradbury et al. 2007; Zhang and Hsu 77 

2018), which provides an appropriate receiver selection for collaborative positioning. Accordingly, 78 

we propose GNSS-based collaborative positioning using 3D building models. The 3DMA GNSS 79 

algorithm is employed for preliminary NLOS detection and exclusion, mitigating the uncorrelated 80 

errors during DD. The 3DMA GNSS is further used to select reliable receivers for collaborative 81 

positioning. Finally, the collaborative positioning solution is integrated with the 3DMA GNSS 82 

solution based on their complementary characteristics, improving the positioning accuracy in 83 

dense urban areas. 84 

 85 

Overview of the Proposed 3DMA GNSS-Based Collaborative Positioning 86 

The flowchart of the proposed collaborative positioning algorithm is shown in Fig. 1. At the single 87 

receiver level, the received GNSS measurements will be used with the GNSS shadow matching 88 
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(SDM) based on the 3D building models (Wang et al. 2013), to obtain an improved initial 89 

positioning solution. Based on the SDM solution, satellite visibility can be identified using the 90 

skymask (skyplot with building boundaries). Therefore, the identification and exclusion of the 91 

NLOS measurements can be conducted. Then, the remaining GNSS measurements will be 92 

subjected to a consistency check. After the two exclusions, the surviving measurements are 93 

considered to be clean GNSS measurements. The surviving pseudorange measurements will be 94 

double differenced to obtain the relative positions between receivers. Meanwhile, the second-layer 95 

of consistency check will be employed during the double difference estimation, ensuring further 96 

the consistency of measurements (Zhang et al. 2018). 97 

Among all measurements, an inaccurate measurement may lead to a large error during 98 

position computation. Therefore, it is important to classify whether the measurement is reliable. 99 

Due to the multipath and NLOS effects, it is difficult to evaluate the positioning performance 100 

mainly relying on measurements (Hsu 2017). Based on the 3D building model in the vicinity of 101 

receiver and the broadcast ephemeris, the multipath and NLOS delay of GNSS pseudorange 102 

measurement can be predicted using a ray-tracing algorithm (Hsu et al. 2016; Ziedan 2017). 103 

Simplifications have also been studied for 3DMA GNSS pseudorange simulation to lower the 104 

computation load for real-time implementation (Ng et al. 2019). Then, a positioning error map for 105 

predicting each location’s GNSS error can be constructed (Zhang and Hsu 2018), and employed 106 

to predict each receiver’s positioning performance based on its error estimate. Based on the 107 

predicted performance, the positioning solutions are obtained by applying the proposed 108 

collaborative positioning algorithm (which is a weighted average approach) to their absolute and 109 

relative positioning solutions. 110 
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 111 

Fig. 1 Flowchart of the proposed 3DMA collaborative positioning algorithm. 112 

 113 

GNSS Shadow Matching Algorithm 114 

Conventional least squares estimation suffers from absorbing unmodeled multipath and NLOS 115 

effect in the urban area. Hence, we use an advanced 3DMA GNSS positioning, also referred to as 116 

shadow matching (SDM), to provide the absolute position of a single receiver. Here, a basic SDM 117 

algorithm is employed (Wang et al. 2015) to determine the receiver location by searching for a 118 

candidate position having a satellite visibility that is the most similar to the actual measured 119 

satellite visibility. The satellite visibility is categorized into LOS and NLOS; the LOS signal 120 

transmission is not blocked and the NLOS signal blocked by obstacles, respectively. The actual 121 

measured satellite visibility is usually determined by C/N0. If it is weaker than a certain threshold, 122 

the sight is NLOS and otherwise it is LOS.  For the satellite visibility prediction at each candidate 123 

position, the surrounding 3D building model from Google Earth (Fig. 2 left) can be plotted in a 124 

polar coordinate overhead with azimuth and elevation, generating the skymask (right panel). Based 125 

on the skymask, the satellite with an elevation below the building boundaries is considered as 126 

NLOS. Otherwise it is LOS. For the measured satellite visibility, since the reflected NLOS signal 127 

may be received in the urban area, only the measurement with C/N0 over 40 dB-Hz will be regarded 128 



6 

 

as LOS measurement, indicating a strong signal (Wang et al. 2013). After obtaining the predicted 129 

satellite visibility for different candidate locations and having the satellite visibility estimated from 130 

actual measurements, the receiver location is determined by finding a candidate position with a 131 

skymask-predicted satellite visibility that is the most similar to the measured satellite visibility. 132 

Fig. 3 demonstrates the match score with color for each candidate position; the higher score 133 

indicates the candidate position has a better match with the computed visibility from the 134 

measurements, which means the receiver has a higher possibility of being located at this candidate 135 

position. Finally, the SDM positioning solution is estimated by the weighted average of all 136 

predicted locations. 137 

 138 

 139 

Fig. 2 Demonstration of the skymask based on the 3D building model corresponding to different 140 

locations. The skymask (right) indicates the sky-view with the building blockage (gray area) 141 

projected by the corresponding building models on Google Earth (left).  142 

 143 

Location 1

Location 2

N
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 144 

Fig. 3 Distribution of match score between the measured satellite visibility and predicted satellite 145 

visibility of different candidate positions. The color indicates the similarity score for each 146 

candidate. 147 

 148 

Identification and Exclusion of NLOS Measurement  149 

NLOS exclusion based only on C/N0 is usually not reliable, since the reflected signal could 150 

possibly have a C/N0 larger than the LOS measurement. A straightforward NLOS exclusion 151 

approach is to further use the 3D building model and the satellite positions to identify which 152 

satellite is blocked by buildings. Since the receiver location is unknown, a feasible approach is to 153 

generate the skymask based on a relatively accurate positioning solution. Interestingly, the GNSS 154 

SDM gives good positioning performance in the across-street direction (Wang et al. 2015), as 155 

shown by the blue dot in Fig.4. Theoretically, its error in along-street direction may only slightly 156 

affect the NLOS identification based on the skymask. The skymasks, the associated NLOS/LOS 157 

identification results for true location, and the LS and SDM solutions are shown in Fig.4. The true 158 

skymask of the receiver identifies that satellites 5, 9, 12, 13 are blocked by buildings. The incorrect 159 

LS solution lays on the wrong side with different skymask, resulting in erroneous NLOS 160 

identification. The SDM solution always falls on the correct side of the streets, which makes its 161 

estimated skymask similar to the truth even through having a large positioning error in along-street 162 

direction.  163 

S
C

O
R

E



8 

 

 164 

Fig. 4 Illustration of NLOS/LOS identification result using the skymasks generated based on 165 

ground-truth location, least squares solution (LS) and shadow matching solution (SDM). The 166 

blue area on the map indicates buildings. The red and green markers on the skymask denote the 167 

NLOS and LOS signals, respectively. 168 

 169 

After obtaining the positioning solution from SDM, the corresponding skymask is 170 

generated to classify NLOS from all GNSS measurements, using 171 

𝑆𝑉𝑁𝐿𝑂𝑆 = {𝑆𝑉 ∈ 𝑆𝑉𝑖|𝑒𝑙𝑒𝑖 < 𝑒𝑙𝑒𝑠𝑘𝑦𝑚𝑎𝑠𝑘(𝑎𝑧𝑖𝑖)}   (1) 172 

For the ith satellite SV, azi and ele denote the azimuth and elevation angles of the satellite, 173 

respectively. The satellites with an elevation angle below the skymask elevation angle on the same 174 

satellite azimuth angle are identified as NLOS satellite. Rather than only based on the C/N0 of the 175 

measurements, the NLOS effect can be greatly mitigated by the proposed 3DMA NLOS exclusion.  176 

 177 

Relative Positioning Algorithm  178 

By using GNSS LOS measurements from different receivers, the relative position between 179 

receivers can be estimated using double differencing. However, the multipath and NLOS error may 180 

increase during DD, which requires it to be mitigated beforehand. Here, after applying the 3DMA 181 

NLOS exclusion, a double-layer consistency check algorithm (Zhang et al. 2018) is further 182 

employed with DD to mitigate the multipath and NLOS errors. 183 
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 184 

First-Layer of Consistency Check on Single Point Positioning 185 

The surviving pseudorange measurements having passed the 3DMA exclusion will be applied to 186 

an equal weighted least squares estimation as follows: 187 

�̂� = 𝐱𝟎 + (𝐇T𝐇)−1𝐇T(𝛒 − 𝛒𝟎)                  (2) 188 

where 𝛒  and 𝛒
𝟎
  are the pseudorange measurements and predictions respectively. 𝐇  denotes the 189 

geometry matrix of satellites. �̂�  and 𝐱𝟎  indicates the estimated and predicted state vectors 190 

respectively, including position and receiver clock bias. The pseudorange residual �̂�𝐿𝑆 191 

corresponding to each measurement can be calculated by: 192 

�̂�𝐿𝑆 = 𝛒 − 𝐇 ∙ �̂�      (3) 193 

Then, the measurement consistency can be evaluated by the sum of square error 𝑆𝑆𝐸𝐿𝑆, using 194 

𝑆𝑆𝐸𝐿𝑆 = �̂�𝐿𝑆
T ∙ �̂�𝐿𝑆      (4) 195 

A small value of 𝑆𝑆𝐸𝐿𝑆 indicates the measurements are consistent. A threshold is determined by 196 

chi-square test with 10−5 probability of false alarm to guarantee the measurements are consistent 197 

enough (Blanch et al. 2015). A small probability of false alarm is used to ensure the healthy 198 

measurements are less unlikely to be mistakenly excluded. If the 𝑆𝑆𝐸𝐿𝑆 is over the threshold, the 199 

measurements will be excluded one by one and the corresponding 𝑆𝑆𝐸𝐿𝑆 recalculated. The subset 200 

of measurements with lowest 𝑆𝑆𝐸𝐿𝑆 is selected as the consistent measurements. By repeating the 201 

exclusion process, the inconsistent measurement will be excluded one by one until the 𝑆𝑆𝐸𝐿𝑆 is 202 

below the threshold. The survived measurements are considered to be consistent enough for 203 

positioning (Hsu et al. 2017).  204 

 205 

Second Layer of Consistency Check on Relative Positioning  206 

By sharing the survived measurements, the DD technique is used for relative positioning between 207 

receivers. For the ith and jth measurement both received by receivers n and m, the double difference 208 

of the shared measurement 𝐷𝑛,𝑚
𝑖,𝑗

 is derived as following: 209 
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               𝐷𝑛,𝑚
𝑖,𝑗

= (𝑒𝑖 − 𝑒𝑗) ∙ ∆�⃗⃗�𝑛,𝑚 + [(𝜀𝑛
𝑖 − 𝜀𝑚

𝑖 ) − (𝜀𝑛
𝑗
− 𝜀𝑚

𝑗
)]          (5) 210 

where 𝑒 denotes the unit LOS vector, ∆�⃗⃗�𝑛,𝑚 denotes the relative position vector between receivers 211 

n and m, 𝜀𝑛
𝑖  indicates the uncommon error from the ith GNSS measurement with regarding to the 212 

receiver n. The DD (5) does not cancel the multipath and NLOS  errors, or even worse, the error 213 

may be aggregated. By conducting the double difference between a reference satellite and other 214 

satellites for the receivers n and m, the relative positioning solution can be derived using: 215 

∆�⃗⃗�𝑛,𝑚 = (𝐄T𝐄)−1𝐄T𝐃𝑛,𝑚     (6) 216 

where E is the geometry matrix. 𝐃𝑛,𝑚  is the DD measurements vector. Hence, the relative 217 

positioning solution can be obtained. 218 

 219 

The second layer of consistency check, which is similar to the first layer but pertains to the double 220 

differences, is employed to further mitigate uncorrelated errors such as multipath and NLOS. After 221 

estimating the relative position ∆�⃗⃗� from DD, the measurement residual 𝜀�̂�𝐷 and the corresponding 222 

sum of square error 𝑆𝑆𝐸𝐷𝐷 can be calculated by 223 

�̂�𝐷𝐷 = 𝐃− 𝐄 ∙ ∆�⃗⃗�      (7) 224 

𝑆𝑆𝐸𝐷𝐷 = �̂�𝐷𝐷
T ∙ �̂�𝐷𝐷      (8) 225 

Again, if the 𝑆𝑆𝐸𝐷𝐷 is over the chi-square test threshold, the DD measurement will be excluded 226 

one by one until finding a measurement subset with a 𝑆𝑆𝐸𝐷𝐷  below the threshold, which are 227 

consistent enough for final double differencing. Finally, the improved relative positioning solution 228 

between different receivers can be obtained by the proposed DD method. 229 

 230 

3DMA GNSS Collaborative Positioning  231 

In general, GNSS-based collaborative positioning, the absolute and relative positions from 232 

available receivers are all combined to optimize the final positioning solution. However, the 233 

multipath and NLOS reception will cause severe errors for the receiver operating in deep urban 234 

canyons, degrading the overall collaborative positioning performance. Therefore, it is necessary to 235 

identify the positioning performance of each receiver, selecting the receiver with healthy GNSS 236 
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signal reception to aid the one with degraded GNSS signal reception. Here, a GNSS positioning 237 

error map from ray-tracing simulation is used to predict the positioning performance of each 238 

receiver. The healthy receivers are selected to aid the degraded receivers with two different 239 

collaborative positioning methods: anchor-based method (Method 1) and complementary 240 

integration method (Method 2). The flowchart of the proposed collaborative positioning is shown 241 

in Fig.5.  242 

 243 

 244 

Fig. 5 Flowchart of the proposed 3DMA GNSS-based collaborative positioning algorithm. 245 

 246 

First, the 3D building models and ephemeris are applied with the ray-tracing algorithm, 247 

simulating the GNSS range measurements including reflections. Then, the positioning error of a 248 

specific location can be predicted with the conventional least square solution from simulated 249 

measurements. The positioning error of each location can be constructed into a positioning error 250 

map (Zhang and Hsu 2018), as shown in Fig.6.  251 
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 252 

Fig. 6 Demonstration of the predicted positioning error map using the ray-tracing algorithm and 253 

3D building models. The color bar denotes the positioning error in the unit of meter. 254 

 255 

Based on the SDM solution of each receiver, the corresponding GNSS positioning error 256 

can be predicted by the positioning error map. The positioning error of neighboring locations 257 

within a range of 10 m are selected to calculate the predicted positioning error of the receiver. 258 

Considering the positioning accuracy of commercial GNSS receiver, the receiver with positioning 259 

error less than 5 m is classified as a healthy receiver, otherwise, a degraded receiver. 260 

 261 

Method 1  262 

The positioning solution estimated by LS or SDM of the degraded receiver still includes large 263 

errors, which are difficult to be reduced by its own measurements. Since the healthy receivers 264 

contain enough LOS measurements, both the absolute and relative positioning solutions achieve 265 

better accuracy compared with that of the degraded receiver. It can use the positioning solutions 266 

of the healthy receiver to estimate the position of the degraded receiver. Therefore, the position of 267 

the degraded receiver can be derived as follows: 268 

 𝐱𝑀1,𝑑𝑒𝑔𝑟𝑎𝑑𝑒𝑑 = 𝐱𝑆𝐷𝑀,ℎ𝑒𝑎𝑙𝑡ℎ𝑦 + ∆�⃗⃗�𝐷𝐷,ℎ𝑒𝑎𝑙𝑡ℎ𝑦−𝑑𝑒𝑔𝑟𝑎𝑑𝑒𝑑   (9) 269 

where x denotes the position of the receiver, the subscript M1 denotes the estimated positioning 270 
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solution from Method 1. 𝐱𝑆𝐷𝑀,ℎ𝑒𝑎𝑙𝑡ℎ𝑦  denotes the SDM solution of the healthy receiver. 271 

∆�⃗⃗�𝐷𝐷,ℎ𝑒𝑎𝑙𝑡ℎ𝑦−𝑑𝑒𝑔𝑟𝑎𝑑𝑒𝑑  denotes the relative positioning vector between healthy and degraded 272 

receiver obtained by the proposed DD method. Using the healthy receiver as an anchor, the position 273 

of the degraded receiver can be determined with better accuracy. 274 

 275 

Method 2  276 

For Method 2, the positioning result of the degraded receiver from Method 1 is further integrated 277 

with the absolute positioning solution of degraded receiver estimated by SDM. The final position 278 

can be calculated as follows: 279 

𝐱𝑀2,𝑑𝑒𝑔𝑟𝑎𝑑𝑒𝑑 =
1

2
(𝐱𝑀1,𝑑𝑒𝑔𝑟𝑎𝑑𝑒𝑑 + 𝐱𝑆𝐷𝑀,𝑑𝑒𝑔𝑟𝑎𝑑𝑒𝑑)    (10) 280 

where x with the subscript of M2 indicates the final solution estimated by Method 2 of the proposed 281 

algorithm. As shown in Fig.7, the positioning error distribution of Method 1 and SDM solutions 282 

are complementary. The SDM solution is known for its performance in the across-street direction. 283 

Method 1 is greatly based on the relative positioning using the common LOS measurements 284 

between two receivers. In the case of urban canyon, the common satellites are very likely visible 285 

in the along-street direction. Although an uncertainty-based weighted averaging could better 286 

integrate the two algorithms, the SDM determines the position by a candidate-searching method, 287 

which is hard to evaluate in terms of positioning uncertainty. Therefore, equal weight averaging is 288 

employed for simplicity. By integrating the solutions of Method 1 and SDM, the final positioning 289 

accuracy can be significantly enhanced. 290 
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 291 

Fig. 7 Demonstration of the complementary positioning error distributions of SDM and Method 292 

1 of the proposed 3DMA GNSS-based collaborative positioning algorithm. The upper panel 293 

shows the positioning distributions based on real data. The lower picture demonstrates the idea 294 

of the complementary characteristics. 295 

 296 

Experiment Setup and Result  297 

To verify the proposed 3DMA GNSS-based collaborative positioning algorithm, a static 298 

experiment is designed as shown in Fig.8 (top). Five locations are selected to represent 5 users in 299 

different environments. For each location, the u-blox M8T is used to collect 10 minutes of GPS 300 

and GLONASS measurements. Similarly, a dynamic experiment is designed as Fig.8 (bottom) to 301 

verify the performance under a vehicle-like environment, where each receiver is carried by a 302 

walking pedestrian. For the dynamic test, Receiver 1 and Receiver 2 are in the open-sky 303 

environment, while Receiver 3 and Receiver 4 are in the urban area. Receiver 5 is located on a 304 

narrow street with tall buildings on both sides, which is a harsh environment for positioning. The 305 
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recorded measurements are post-processed by the proposed algorithm. 306 

 307 

Fig. 8 Receiver locations of the static experiment (top) and dynamic experiment (bottom) in the 308 

urban area for the proposed 3DMA collaborative positioning algorithm. 309 

 310 

Receiver performance classification during the static test 311 

Based on the predicted GNSS positioning error map from ray-tracing simulation and SDM 312 

solutions, the positioning performance of each receiver can be predicted. The predicted positioning 313 

error distribution of each receiver is compared with its real-time least-squares estimation in Fig.9. 314 
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The corresponding mean errors and classification results are shown in Table 1. 315 

 316 

 317 

Fig. 9 Predicted positioning error obtained from the positioning error map and real positioning 318 

error based on least squares estimation for different receivers.  LS stands for least square 319 

estimation and PE Map Prediction stands for predicted positioning error map. 320 

 321 

Table 1 Mean positioning error (m) and class of each receiver obtained from the least-squares 322 

estimation (LS) and predicted positioning error map (PEM). 323 

Receiver 1 2 3 4 5 

LS (m) 4.3 3.1 16.9 8.7 26.6 

PEM (m) 2.6 7.0 11.5 9.7 25.8 

Class Healthy Degraded Degraded Degraded Degraded 

 324 

Comparing the positioning error between the error map (black line) and LS (cyan line) in 325 

Fig.9, the predicted error of each receiver is similar to the real positioning error from LS, although 326 

the deviation of the true positioning error is larger. Therefore, the result verifies that the positioning 327 
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error map can predict the positioning error of each receiver. In the case of Receiver 1, the predicted 328 

error is less than 5 meters, which will be classified as a healthy receiver for collaborative 329 

positioning. For the other receivers, the predicted positioning errors are larger than 5 meters and 330 

classified as degraded receivers. The degraded receivers may suffer multipath or NLOS reception, 331 

requiring the aids of collaborative positioning. 332 

 333 

Positioning performance of the static test 334 

The performance of the proposed collaborative positioning algorithm will be compared with the 335 

following five approaches: 336 

1) LS: Conventional least squares positioning algorithm 337 

2) SDM: shadow matching, an innovative 3DMA GNSS positioning method. 338 

3) CP-DD2CC: Collaborative positioning based on double layers consistency check. 339 

4) CP-Method 1: The proposed anchor based 3DMA GNSS collaborative positioning. 340 

5) CP-Method 2: The proposed complementary integration based 3DMA GNSS 341 

collaborative positioning. 342 

 343 

For Receiver 5, the positioning solutions of LS, SDM, CP-DD2CC, CP-Method 1 and CP-Method 344 

2 compared to its true location are shown on the Google Earth map in Fig.10. The positioning 345 

errors per epoch of the different approaches are shown in Fig.11. The mean and standard deviation 346 

of the positioning error for each degraded receiver (Receivers 2, 3, 4 and 5) are shown in Table 2. 347 

 348 



18 

 

 349 

Fig. 10 Positioning solution of LS, SDM, CP-DD2CC, CP-Method 1 and CP-Method 2 for 350 

Receiver 5.  351 

 352 

Fig. 11 Positioning error distributions of LS, SDM, CP-DD2CC, CP-Method 1 and CP-Method 2 353 

for Receiver 5.  354 

 355 

 356 

Table 2 Mean positioning error and standard deviation of the classified degraded receivers by 357 

LS, SDM, CP-DD2CC, CP-Method 1 and CP-Method 2 358 
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Receiver Method LS SDM CP-DD2CC CP-Method 1 CP-Method 2 

2 

Mean (m) 3.1 3.6 10.4 4.2 3.3 

STD (m) 2.4 2.8 43.3 2.5 1.9 

3 

Mean (m) 16.9 12.7 21.8 18.2 12.5 

STD (m) 7.0 7.1 65.7 14.4 7.7 

4 

Mean (m) 8.7 8.3 13.2 10.8 6.8 

STD (m) 7.7 4.0 23.8 8.8 4.7 

5 

Mean (m) 26.6 19.3 36.3 17.9 15.3 

STD (m) 12.4 15.7 41.2 12.1 8.9 

 359 

Focusing on the case of Receiver 5, the estimated positions of the conventional LS have 360 

significantly drifted from the true location, showing a 26.6 m mean error. Since the NLOS to LOS 361 

measurements ratio is large, the consistency check algorithm may suffer from the fake consistency 362 

issue. The healthy measurements may be mistakenly excluded and further increase the mean error 363 

of collaborative positioning algorithm to 36.3 meters with 41.2 meters in STD. Aided by the 3D 364 

building model, the SDM avoids using the multipath/NLOS affected pseudorange measurements 365 

and improves the positioning error to 19.3 m in the mean. However, the positioning error is still 366 

large because the NLOS cannot be all correctly classified based on the C/N0. The proposed 367 

algorithm first excludes the NLOS measurements based on the satellite visibility from SDM. Then, 368 

the classified healthy receiver further collaborates with degraded receivers by double differencing 369 

their pseudorange measurements with double-layer consistency check. Hence, the multipath effect 370 

and NLOS reception can be largely mitigated, contributing a more accurate result with 17.9 m in 371 

mean and 12.1 m in STD (Method 1). Based on the complementary error distribution illustrated in 372 

Fig 10, the CP-Method 1 solution can be further integrated with degraded receiver’s SDM solution 373 

as Method 2. The proposed CP-Method 2 can mitigate the enormous positioning error of shadow 374 

matching or CP-Method 1 seen in Fig 11, thus contributing a more stable and accurate positioning 375 

solution with 15.3 meters mean error and 8.9 m in STD.  376 

 For Receivers 3 and 4 located at an environment that half of the sky is blocked by buildings, 377 

the shadow matching technique is effective and outperforms the CP-Method 1, since it mitigates 378 
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the positioning error from pseudorange measurements. The proposed CP-Method 2 further 379 

employs the solution of Method 1 to compensate for the positioning error in the direction in which 380 

shadow matching is ineffective, obtaining a better positioning result. Noticed that Receiver 3 is 381 

near a bridge that is not modeled in the 3D building model, causing the proposed algorithm to 382 

achieve limited improvements. Receiver 2 in the open-sky situation is inappropriately classified 383 

as a degraded receiver due to the prediction error. However, the proposed algorithm is still able to 384 

maintain its positioning performance of 3.3 meters in the mean with 1.9 meters in STD. After all, 385 

the proposed 3DMA GNSS collaborative positioning algorithm can improve the positioning 386 

performance of the receivers in an urban area as well as maintaining the performance of the ones 387 

in open-reception areas. 388 

 389 

Positioning performance of the dynamic test 390 

Based on the proposed receiver performance classification method, Receiver 1 and Receiver 2 are 391 

classified as healthy receivers with predicted positioning errors of about 0.1 m and 1.5 m. 392 

Receivers 3, 4 and 5 are classified as degraded receivers with 35.6 m, 33.6 m and 17.0 m predicted 393 

positioning error respectively. Therefore, we proposed to collaborate the measurements from 394 

Receiver 1 (healthy) with Receivers 3, 4 and 5 to improving the accuracy of each of these degraded 395 

receivers. The positioning solutions of the proposed and conventional SPP methods for each 396 

degraded receiver are shown in Fig. 12 and with mean and STD given in Table 3. Both Methods 1 397 

and 2 can achieve a mean positioning error of less than half the conventional LS method, and 398 

significantly improve the accuracy compared to SDM and CP-DD2CC solutions. For Receiver 5, 399 

Method 2 makes use of the complementary behavior of Method 1 and SDM to further reduce the 400 

positioning error to 14.4 meters, which is twice as good as the LS method. However, the proposed 401 

Method 2 does not achieve better performance for Receiver 3 and Receiver 4. This is because the 402 

SDM performance is not satisfactory, whereas the SDM-based NLOS classification is very 403 

accurate. Most of the NLOS measurements are correctly excluded, resulting in an accurate Method 404 

1 solution. Since the SDM is performing much worse with regard to Method 1, the positioning 405 

accuracy of Method 2 using equal averaging may be degraded by the SDM solution. As a result, 406 

an improvement from complementarily integrating SDM and Method 1 may not occur when the 407 

two methods perform at very different accuracy. 408 
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 409 

 410 

Fig. 12 Positioning solutions of LS, SDM, CP-DD2CC, CP-Method 1, CP-Method 2 regarding 411 

and true receiver location (Truth) for Receiver 3 in the middle between buildings (left), Receiver 412 

4 closed to the building (middle) and Receiver 5 on a narrow street closed to buildings (right).   413 

 414 

Table 3 Mean positioning error and standard deviation of the classified degraded receivers by 415 

LS, SDM, CP-DD2CC, CP-Method 1 and CP-Method 2 in a dynamic test 416 

Receiver Method LS SDM CP-DD2CC CP-Method 1 CP-Method 2 

3 

Mean (m) 11.4 10.3 8.1 3.0 5.4 

STD (m) 9.3 5.8 7.1 1.7 3.3 

4 

Mean (m) 21.7 17.8 15.0 5.6 10.6 

STD (m) 13.1 6.1 14.5 6.1 4.5 

5 

Mean (m) 46.2 16.7 49.8 19.0 14.4 

STD (m) 5.1 5.4 11.3 19.9 10.2 

 417 

Conclusions 418 

In this study, a new 3DMA GNSS collaborative positioning algorithm is developed. By estimating 419 

the satellite visibility based on SDM, the NLOS measurements in dense urban area are correctly 420 

distinguished and excluded. Based on the predicted GNSS positioning error map, the healthy 421 

receiver can be identified and then used to collaborate with degraded receivers. The DD method 422 

with double-layer consistency check is employed during the relative positioning, which further 423 
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mitigates the multipath effect and NLOS reception. The proposed collaborative positioning uses 424 

the measurements of the healthy receiver to aid positioning of degraded receivers and further 425 

integrates with the complementary SDM solution, achieving better positioning performance in 426 

dense urban areas. 427 

 The collaborative process of the proposed algorithm is simply based on equal weighted 428 

averaging. A more effective and suitable optimization approach such as factor-graph optimization 429 

is worth to be studied to improve the integration performance. 430 
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